Advanced Time Series Econometrics

Autumn 2023

Exercises 1: Probability Solutions By Theo

1. F_{1} is a σ-field since \emptyset and Ω belong to $F_{1} . F_{1}$ is the smallest σ-field on Ω. F_{2} is a σ-field since \emptyset, Ω, A and A^{c} belong to $F_{2} . F_{3}$ is a σ-field since all subsets of Ω (countable) belong to $F_{3} . F_{3}$ is the largest σ-field on Ω.
2. Using the definition of a σ-field, the sets \emptyset and Ω belong to the σ-field $\sigma\left(A_{1}\right)$, which proves that $F_{1}=\sigma\left(A_{1}\right)$. Similarly, the sets \emptyset, Ω, A and A^{c} belong to the σ-field $\sigma\left(A_{2}\right)$, which proves that $F_{2}=\sigma\left(A_{2}\right)$. The set F_{3} is a σ-field, and by tautology $F_{3}=\sigma\left(\left\{F_{3}\right\}\right)$.
3. (a) Take $x_{1}, x_{2} \in \mathbb{R}, x_{1}<x_{2}$. Then

$$
\bigcup_{n=1}^{\infty}\left[x_{1}+\frac{\epsilon}{n}, x_{2}-\frac{\epsilon}{n}\right]=\left(x_{1}, x_{2}\right) ;
$$

for $\epsilon<\frac{1}{2\left(x_{2}-x_{1}\right)}$. Countable unions of closed intervals are open intervals. The Borel σ-field \mathcal{B} therefore contains all open intervals.
(b) The Borel σ-field \mathcal{B} is defined to be generated by the half lines $(-\infty, x]$. Since

$$
\bigcup_{n=1}^{\infty}(x-n, x]=(-\infty, x] ;
$$

the sets $(-\infty, x]$ can be generated by countable unions of finite intervals. Hence, they generate the same Borel σ-field.
4. Let A_{1}, A_{2}, \ldots be a sequence of sets such that the collection $\left\{A_{n}: n \in \mathbb{R}\right\}$ is a partition of $\Omega=\{1,2, \ldots\}$ and $P\left(A_{1}\right)=P\left(A_{2}\right)=\ldots=p>0$. Then

$$
\sum_{i=1}^{\infty} P\left(A_{i}\right)=\infty
$$

Which is a contradiction of countable additivity. On the other hand, if $p=0$, then the probability axiom $P(\Omega)=1$ is not satisfied.
5. (a) If $a>0$, then $\{\omega: a X(\omega) \leq x\}=\left\{\omega: X(\omega) \leq \frac{x}{a}\right\} \in \mathcal{F}$, since X is a random variable. If $a=0$,

$$
\{\omega: a X(\omega) \leq x\}= \begin{cases}\emptyset, & \text { if } x<0 \\ \Omega, & \text { if } x \geq 0\end{cases}
$$

In either case, the event belongs to \mathcal{F}. If $a<0$,

$$
\{\omega: a X(\omega) \leq x\}=\left\{\omega: X(\omega) \geq \frac{x}{a}\right\}=\left(\bigcup_{n=1}^{\infty}\left\{\omega: X(\omega) \leq \frac{x}{a}-\frac{1}{n}\right\}\right)^{c}
$$

Which belongs to \mathcal{F}, since it is the complement of a countable union of events belonging to \mathcal{F}. The second equality follows from the first of De Morgan's laws. Linear functions are continuous. The conclusion that $a X$ is a random variable follows from Theorem 8 (Theorem 13.2 of Billingsley 1995).
(b) For $\omega \in \Omega, X(\omega)-X(\omega)=0$, so it follows from (a) with $a=0$ that the zero random variable is a random variable. Similarly, $X+X=2 X$, and it follows from (a) with $a=2$ that $2 X$ is a random variable.
6. The limit, if it exists, is $X=0$.
(a) By Lemma 10, X_{n} converges to X almost surely, as $n \rightarrow \infty$, if for every $\varepsilon>0$,

$$
\sum_{n=1}^{\infty} P\left(\left|X_{n}-X\right|>\varepsilon\right)<\infty
$$

We have

$$
\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>\varepsilon\right)=\sum_{n=1}^{\infty} P\left(X_{n}=n\right)=\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}<\infty
$$

if $\alpha>1$. Therefore, X_{n} converges to 0 almost surely, as $n \rightarrow \infty$, if $\alpha>1$.
(b) Convergence in probability follows from

$$
P\left(\left|X_{n}\right|>\varepsilon\right)=P\left(X_{n}=n\right)=\frac{1}{n^{\alpha}} \rightarrow 0
$$

as $n \rightarrow \infty$. Therefore, X_{n} converges to 0 almost surely, as $n \rightarrow \infty$, for all $\alpha>0$.
(c) For convergence in quadratic mean,

$$
E\left(X_{n}^{2}\right)=0^{2} \cdot\left(1-\frac{1}{n^{\alpha}}\right)+n^{2} \cdot \frac{1}{n^{\alpha}}=\frac{1}{n^{\alpha-2}} \rightarrow 0
$$

as $n \rightarrow \infty$ for $\alpha>2$. Therefore, X_{n} converges to 0 almost surely, as $n \rightarrow \infty$, if $\alpha>2$.

Remarks: Convergence in probability follows from almost sure convergence under the additional assumption that $\alpha>1$. Convergence in probability follows from convergence in quadratic mean under the additional assumption that $\alpha>2$.
7.
(a) $A \in \mathcal{F}_{11}$, but $A \notin \mathcal{F}_{10}$. The smallest n is $n=11$.
(b) $A \notin \mathcal{F}_{n}$ for any n. There is no smallest n such that $A \in \mathcal{F}_{n}$.
(c) $A \in \mathcal{F}_{100}$, but $A \notin \mathcal{F}_{99}$. The smallest n is $n=100$.
(d) Since $A=\emptyset, A \in \mathcal{F}_{n}$ for all $n=1,2, \ldots$ The smallest n is $n=1$.

8 (a) Verify (i)-(iii) in Definition 23.
(i) $E\left(\left|X_{n} g_{n-1}\right|\right)<\infty$ is assumed.
(ii) $\left\{X_{n} g_{n-1}\right\}$ is adapted to F_{n}.
(iii) $E\left(X_{n} g_{n-1} \mid F_{n-1}\right)=g_{n-1} E\left(X_{n} \mid F_{n-1}\right)=0$. The first equality follows since g_{n-1} is adapted to F_{n-1} ('taking out what is known') and the second since $\left\{X_{n} g\right\}$ is a martingale difference sequence with respect to F_{n}.
(b) By the law of iterated expectations,

$$
E\left(X_{n}\right)=E\left(E\left(X_{n} \mid F_{n-1}\right)\right)=0
$$

and

$$
E\left(X_{n} g_{n-1}\right)=E\left(E\left(X_{n} g_{n-1} \mid F_{n-1}\right)\right)=E\left(g_{n-1} E\left(X_{n} \mid F_{n-1}\right)\right)=0
$$

Hence,

$$
\operatorname{Cov}\left(X_{n}, g_{n-1}\right)=E\left(X_{n} g_{n-1}\right)-E\left(X_{n}\right) E\left(g_{n-1}\right)=0
$$

(c) Put $g_{n-1}=X_{t-h}$. The result in (b) implies

$$
\operatorname{Cov}\left(X_{n}, X_{n-h}\right)=0 ; \quad h>0 .
$$

