Advanced Time Series Econometrics

Autumn 2023

Exercises 1: Probability Solutions By Theo

- 1. F_1 is a σ -field since \emptyset and Ω belong to F_1 . F_1 is the smallest σ -field on Ω . F_2 is a σ -field since \emptyset , Ω , A and A^c belong to F_2 . F_3 is a σ -field since all subsets of Ω (countable) belong to F_3 . F_3 is the largest σ -field on Ω .
- 2. Using the definition of a σ -field, the sets \emptyset and Ω belong to the σ -field $\sigma(A_1)$, which proves that $F_1 = \sigma(A_1)$. Similarly, the sets \emptyset , Ω , A and A^c belong to the σ -field $\sigma(A_2)$, which proves that $F_2 = \sigma(A_2)$. The set F_3 is a σ -field, and by tautology $F_3 = \sigma(\{F_3\})$.
- 3. (a) Take $x_1, x_2 \in \mathbb{R}, x_1 < x_2$. Then

$$\bigcup_{n=1}^{\infty} \left[x_1 + \frac{\epsilon}{n}, x_2 - \frac{\epsilon}{n} \right] = (x_1, x_2);$$

for $\epsilon < \frac{1}{2(x_2-x_1)}$. Countable unions of closed intervals are open intervals. The Borel σ -field \mathcal{B} therefore contains all open intervals.

(b) The Borel σ -field \mathcal{B} is defined to be generated by the half lines $(-\infty, x]$. Since

$$\bigcup_{n=1}^{\infty} (x-n, x] = (-\infty, x];$$

the sets $(-\infty, x]$ can be generated by countable unions of finite intervals. Hence, they generate the same Borel σ -field.

4. Let A_1, A_2, \ldots be a sequence of sets such that the collection $\{A_n : n \in \mathbb{R}\}$ is a partition of $\Omega = \{1, 2, \ldots\}$ and $P(A_1) = P(A_2) = \ldots = p > 0$. Then

$$\sum_{i=1}^{\infty} P(A_i) = \infty,$$

Which is a contradiction of countable additivity. On the other hand, if p = 0, then the probability axiom $P(\Omega) = 1$ is not satisfied.

5. (a) If a > 0, then $\{\omega : aX(\omega) \le x\} = \{\omega : X(\omega) \le \frac{x}{a}\} \in \mathcal{F}$, since X is a random variable. If a = 0,

$$\{\omega : aX(\omega) \le x\} = \begin{cases} \emptyset, & \text{if } x < 0; \\ \Omega, & \text{if } x \ge 0; \end{cases}$$

In either case, the event belongs to \mathcal{F} . If a < 0,

$$\{\omega: aX(\omega) \le x\} = \{\omega: X(\omega) \ge \frac{x}{a}\} = \left(\bigcup_{n=1}^{\infty} \left\{\omega: X(\omega) \le \frac{x}{a} - \frac{1}{n}\right\}\right)^c,$$

Which belongs to \mathcal{F} , since it is the complement of a countable union of events belonging to \mathcal{F} . The second equality follows from the first of De Morgan's laws. Linear functions are continuous. The conclusion that aX is a random variable follows from Theorem 8 (Theorem 13.2 of Billingsley 1995).

- (b) For $\omega \in \Omega$, $X(\omega) X(\omega) = 0$, so it follows from (a) with a = 0 that the zero random variable is a random variable. Similarly, X + X = 2X, and it follows from (a) with a = 2 that 2X is a random variable.
- 6. The limit, if it exists, is X = 0.
 - (a) By Lemma 10, X_n converges to X almost surely, as $n \to \infty$, if for every $\varepsilon > 0$,

$$\sum_{n=1}^{\infty} P(|X_n - X| > \varepsilon) < \infty.$$

We have

$$\sum_{n=1}^{\infty} P(|X_n| > \varepsilon) = \sum_{n=1}^{\infty} P(X_n = n) = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < \infty,$$

if $\alpha > 1$. Therefore, X_n converges to 0 almost surely, as $n \to \infty$, if $\alpha > 1$.

(b) Convergence in probability follows from

$$P(|X_n| > \varepsilon) = P(X_n = n) = \frac{1}{n^{\alpha}} \to 0,$$

as $n \to \infty$. Therefore, X_n converges to 0 almost surely, as $n \to \infty$, for all $\alpha > 0$.

(c) For convergence in quadratic mean,

$$E(X_n^2) = 0^2 \cdot \left(1 - \frac{1}{n^{\alpha}}\right) + n^2 \cdot \frac{1}{n^{\alpha}} = \frac{1}{n^{\alpha - 2}} \to 0.$$

as $n \to \infty$ for $\alpha > 2$. Therefore, X_n converges to 0 almost surely, as $n \to \infty$, if $\alpha > 2$.

Remarks: Convergence in probability follows from almost sure convergence under the additional assumption that $\alpha > 1$. Convergence in probability follows from convergence in quadratic mean under the additional assumption that $\alpha > 2$.

7.

- (a) $A \in \mathcal{F}_{11}$, but $A \notin \mathcal{F}_{10}$. The smallest *n* is n = 11.
- (b) $A \notin \mathcal{F}_n$ for any *n*. There is no smallest *n* such that $A \in \mathcal{F}_n$.
- (c) $A \in \mathcal{F}_{100}$, but $A \notin \mathcal{F}_{99}$. The smallest *n* is n = 100.
- (d) Since $A = \emptyset$, $A \in \mathcal{F}_n$ for all $n = 1, 2, \dots$ The smallest n is n = 1.
- 8 (a) Verify (i)–(iii) in Definition 23.
 - (i) $E(|X_n g_{n-1}|) < \infty$ is assumed.
 - (ii) $\{X_n g_{n-1}\}$ is adapted to F_n .
 - (iii) $E(X_ng_{n-1} | F_{n-1}) = g_{n-1}E(X_n | F_{n-1}) = 0$. The first equality follows since g_{n-1} is adapted to F_{n-1} ('taking out what is known') and the second since $\{X_ng\}$ is a martingale difference sequence with respect to F_n .
 - (b) By the law of iterated expectations,

$$E(X_n) = E(E(X_n | F_{n-1})) = 0$$

and

$$E(X_n g_{n-1}) = E(E(X_n g_{n-1} \mid F_{n-1})) = E(g_{n-1}E(X_n \mid F_{n-1})) = 0.$$

Hence,

$$Cov(X_n, g_{n-1}) = E(X_n g_{n-1}) - E(X_n)E(g_{n-1}) = 0.$$

(c) Put $g_{n-1} = X_{t-h}$. The result in (b) implies

$$\operatorname{Cov}(X_n, X_{n-h}) = 0; \quad h > 0.$$